New publication: Epigenetics & Chromatin

Schmeier Research Group // Massey University

PUBLICATION

We are very happy about this one. The first paper from work led by my PhD student Elena! Congrats! Link to open access article here: https://doi.org/10.1186/s13072-017-0158-9

Abstract below:

Macrophages are sentinel cells essential for tissue homeostasis and host defence. Owing to their plasticity, macrophages acquire a range of functional phenotypes in response to microenvironmental stimuli, of which M(IFN-γ) and M(IL-4/IL-13) are well known for their opposing pro- and anti-inflammatory roles. Enhancers have emerged as regulatory DNA elements crucial for transcriptional activation of gene expression. Using cap analysis of gene expression and epigenetic data, we identify on large-scale transcribed enhancers in bone marrow-derived mouse macrophages, their time kinetics, and target protein-coding genes. We observe an increase in target gene expression, concomitant with increasing numbers of associated enhancers, and find that genes associated with many enhancers show a shift towards stronger enrichment for macrophage-specific biological processes. We infer enhancers that drive transcriptional responses of genes upon M(IFN-γ) and M(IL-4/IL-13) macrophage activation and demonstrate stimuli specificity of regulatory associations. Finally, we show that enhancer regions are enriched for binding sites of inflammation-related transcription factors, suggesting a link between stimuli response and enhancer transcriptional control. Our study provides new insights into genome-wide enhancer-mediated transcriptional control of macrophage genes, including those implicated in macrophage activation, and offers a detailed genome-wide catalogue of transcribed enhancers in bone marrow-derived mouse macrophages.

Publications // latest

MinION Sequencing of colorectal cancer tumour microbiomes – a comparison with amplicon-based and RNA-Sequencing. PLoS One, 2020, accepted.

Molecular subtyping improves prognostication of Stage 2 colorectal cancer. BMC Cancer, 2019, 19, 1155

DeePEL: Deep learning architecture to recognize p-lncRNA and e-lncRNA promoters. In proceedings: IEEE International Conference on Bioinformatics and Biomedicine, 2019, B516, accepted.

News&Blog // latest

[ 20190528 | news ] Recent funding successes.

[ 20190319 | news ] New publication: Frontiers in Immonology

[ 20190122 | news ] New publication: BMC Genomics

[ 20181230 | news ] New publication: Molecular Phylogenetics and Evolution

[ 20180703 | news ] New publication: Nature Methods

Tweets // latest